Рецептор - сложное образование, состоящие из терминалей (нервных окончаний) и дендритов чувствительных нейронов, глии и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражение) в нервный импульс. Эта внешняя информация может поступать на рецептор в форме света, попадающего на сетчатку; механической деформации кожи, барабанной перепонки или полукружных каналов; химических веществ, проникающих в органы обоняния или вкуса. Большинство обычных сенсорных рецепторов (химических, температурных или механических) деполяризуется в ответ на стимул (такая же реакция, как и у обычных нейронов), деполяризация ведёт к высвобождению медиатора из аксонных окончаний. Однако существуют исключения: при освещении колбочки потенциал на её мембране возрастает - мембрана гиперполяризуется: свет, повышая потенциал, уменьшает выделение медиатора.
По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств. Животные могут воспринимать информацию следующих типов: - свет (фоторецепторы); - химические вещества – вкус, запах, влажность (хеморецепторы); - механические деформации – звук, прикосновение, давление, сила тяжести (механорецепторы); - температура (терморецепторы); - электричество (электрорецепторы).
Сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала). Для того, чтобы определить интенсивность стимула, рецепторный орган использует параллельно несколько клеток, у каждой из которых имеется свой порог чувствительности. Существует и относительная чувствительность – на сколько процентов нужно изменить интенсивность сигнала, чтобы орган чувства зафиксировал изменение. Так, у человека относительная чувствительность яркости света примерно равна 1 %, силы звука – 10 %, силы тяжести – 3 %. Эти закономерности были открыты Бугером и Вебером; они справедливы только для средней зоны интенсивности раздражителей. Сенсорам также свойственна адаптация – они реагируют преимущественно на резкие изменения в окружающей среде, не «засоряя» нервную систему статической фоновой информацией. Ч
увствительность сенсорного органа можно значительно повысить посредством суммации, когда несколько расположенных рядом сенсорных клеток связаны с одним нейроном. Слабый сигнал, попадающий в рецептор, не вызвал бы возбуждения нейронов, если бы они были связаны с каждой из сенсорных клеток в отдельности, но вызывает возбуждение нейрона, в котором суммируется информация от нескольких клеток сразу. С другой стороны, этот эффект понижает разрешающую способность органа. Так, палочки в сетчатке глаза, в отличие от колбочек, обладают повышенной чувствительностью, так как один нейрон связан сразу с несколькими палочками, но зато имеют меньшую разрешающую способность. Чувствительность к очень малым изменениям в некоторых рецепторах очень высока благодаря их спонтанной активности, когда нервные импульсы возникают даже в отсутствие сигнала. В противном случае слабые импульсы не смогли бы преодолеть порог чувствительности нейрона. Порог чувствительности может изменяться благодаря импульсам, поступающим из центральной нервной системы (обычно по принципу обратной связи), что изменяет диапазон чувствительности рецептора. Наконец, важную роль в повышении чувствительности играет латеральное торможение. Соседние сенсорные клетки, возбуждаясь, оказывают друг на друга тормозящее воздействие. Благодаря этому усиливается контраст между соседними участками. В зависимости от строения рецепторов их подразделяют на первичные, или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные, или вторичночувствующие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула.
Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины. К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов.
Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами. В зависимости от источника адекватных стимулов рецепторы подразделяют на наружные и внутренние, или экстерорецепторы и интерорецепторы; первые стимулируются при действии раздражителей внешней среды (электромагнитные и звуковые волны, давление, действие пахучих молекул), а вторые - внутренней (к этому типу рецепторов относят не только висцерорецепторы внутренних органов, но также проприоцепторы и вестибулярные рецепторы). В зависимости от того, действует стимул на расстоянии или непосредственно на рецепторы, их подразделяют еще на дистантные и контактные.
Рецепторы кожи
Рецепторы мышц и сухожилий
Рецепторы связок В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа - инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 - тельцам Паччини.
Рецепторы сетчатки глаза Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент - это и есть основа цветового зрения. Под воздействием света в рецепторах происходит выцветание - молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны).
Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A. Эта молекула и представляет собой химически трансформируемую светом часть. Белковая часть выцвевшей молекулы зрительного пигмента активирует молекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата, участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается - мембрана гиперполяризуется. Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки не способны реагировать на изменения освещённости когда свет настолько ярок, что все натриевые поры уже закрыты.
Невролог
Осмотр невролога